Exit

AirSweep Reduces Cleaning and Maintenance Time

Author Archives: Control Concepts USA

  1. AirSweep Reduces Cleaning and Maintenance Time

    Comments Off on AirSweep Reduces Cleaning and Maintenance Time

    Clean and shiny industrial filtration system

    Periodic cleaning and maintenance of vessels can cause significant costs and downtime. However, many companies have found a simple way to streamline this process and further achieve material handling automation. They use AirSweep to improve material flow and flush vessels completely clean.

    How does AirSweep help clean the vessels?

    AirSweep releases high-pressure, compressed air pulses that can be released in 360-degree or vertical columns. The nozzles can be strategically placed at specific points in the vessel and timed to release in a particular sequence. 

    Unlike other flow aids that rely on mechanical force or gravity, AirSweep’s air pulses create a powerful, controlled flow within the vessel. It dislodges even the most stubborn materials and ensures that every nook and cranny of the vessel is thoroughly cleaned – leaving no residue behind.

    Why should you use AirSweep to streamline cleaning cycles?

    While AirSweep is primarily used to prevent bridging, ratholing, and material blocks, many companies use the technology to flush vessels between batch runs.

    Save time and increase productivity

    One of the world’s largest manufacturers of infant formula uses AirSweep to clear material build-up in between batch runs of regular and lactose-free milk. 

    They use the AirSweep USDA 135, engineered specifically for sanitary applications, and the AirSweep Straight Shooter. The combination of air pulses released at 360 degrees and air pulses released in a vertical column allow them to flush different kinds of vessels – blenders, receivers, sifters and even packaging line vessels.

    AirSweep has reduced the time and labor needed to clean after the batch runs were completed. This allowed them to add batch runs and increase production output.

    Lower cost and material waste

    A leading spice and flavor blends manufacturer with facilities in 25 countries around the world used to manually clean their ribbon blenders by flushing them out with flour. This system was expensive and labor-intensive, and still left some spice residue that could compromise batch uniformity.

    After installing AirSweep, they achieved a 62% reduction in flour flush and a 42% reduction in labor, all directly attributed to the AirSweep units. They saved $200,000 a year from flush material reduction alone.

    Is AirSweep hard to clean and maintain?

    The AirSweep unit itself is designed to shorten cleaning and maintenance times.  With the AirSweep Tri-Clover Clamp the nozzle can be dismantled and then reattached within minutes with a few basic hand tools. The nozzle can also withstand corrosive cleaning materials.

    Does AirSweep meet sanitary requirements?

    Many industries that need frequent vessel cleaning or flushing need sanitary equipment. This includes food, biotechnology, pharmaceuticals, and nutraceuticals. The USDA-accepted AirSweep is designed to meet the strictest sanitary requirements.

    AirSweep: the complete solution for lowering factory downtime

    AirSweep is the only flow aid that can be used to reduce material blocks and flush vessels clean. This combination of features makes it one of the best ways to improve productivity and reduce downtime.

    Contact us to find out more about AirSweep and how it can improve your material handling automation and overall plant efficiency.

  2. 4 Companies That Switched to AirSweep and Improved Bulk Material Processing

    Comments Off on 4 Companies That Switched to AirSweep and Improved Bulk Material Processing

    Sweet Cookies in a bakery line flowing down a production line

    The right flow aid can make bulk material processing more efficient. It can resolve common problems like bridging and ratholing, and prevent thousands of hours of downtime a year. 

    However, many flow aids fail to meet expectations. They only partially clear material, or even cause the powders or solids to become more compact. Companies still have to send workers to clean up the mess.

    Only AirSweep solves material flow problems completely and efficiently. In fact, many companies shifted to AirSweep after trying out fluidizers, vibrators, and other competing technologies. Take a look at five case studies where companies made the switch and saw remarkable improvements.

    Global tire manufacturer: AirSweep more reliable than fluidizers

    One of the world’s leading tire manufacturers had frequent delays of carbon black bridging in the hopper. The material residue also led to off-spec batches that had to be discarded. 

    They tried fluidizers, but these were ineffective and used too much plant air and energy. They wanted a flow aid that created on-demand flow and was less expensive to operate.  

    The AirSweep difference 

    AirSweep was the best flow aid for their bulk material processing needs. They installed two AirSweep VA-12 units, which were set up to release pulses in a specific time and sequence. It used less compressed gas than fluidizers that ran continuously and flushed all material from the vessel. 

    This led to higher production, and lower energy consumption and product waste. The tire manufacturer was so satisfied with the results, that it installed more units in other parts of the plant and in other facilities in the US and Canada. 

    “The fluidizers were really ineffective. AirSweep has provided us with reliable flow and reliable batch uniformity.”

    Food company frustrated by industrial vibrators – gives AirSweep 10/10

    A commercial bakery was wasting time and money because of flax oil and cocoa powder bridging in the discharge. They had frequent downtimes and threw away up to 40 pounds of mixture a day. 

    Other flow aids just made the problem worse. “The vibrators that came installed on the bottom of the hopper above the mixture practically turned the flax into concrete. Then we installed fluidizers, which were terrible.”

    The AirSweep difference 

    The company contacted AirSweep after seeing material flow test videos that demonstrated its effectiveness on wet, sticky materials. They installed the AirSweep VA-06, which was ideal for their small vessel size.

    They saw results immediately. AirSweep resolved 90% of the material bridging problems. Their workers didn’t have to manually clear the blocks, and they no longer had to worry about the wasted mixture. 

    The company was also pleased by the responsive customer service and painless installation. “My experience totally exceeded my expectations—a 10 out of 10!”

    Cement company finds AirSweep more powerful than air cannons

    Heidelberg Cement, one of the world’s largest manufacturers of building materials, had issues with clinker clinging to vessels and chutes. Clinker is sticky and abrasive, and can’t be activated by fluidizers or vibrators. They thought air cannons–which blast massive volumes of air at material blocks–could solve the problem. But despite using a lot of plant air and energy, air cannons still left a lot of material on the vessel walls. “We were using a bar to [break] the material in the tube.”

    The AirSweep difference 

    Heidelberg replaced the air cannons with two AirSweep VA-51 units – the largest and most powerful model. Each unit can activate the toughest and stickiest materials within a four-foot radius and can even operate in hot or hazardous environments.

    “The AirSweeps worked perfectly,” they said. Aside from restoring reliable material flow, AirSweep also used less plant air and did not wear out the equipment. This meant lower operating and maintenance costs than air cannons – not to mention less noise!

    Food company stressed out by hammers – AirSweep saves the day

    Bunge, an agribusiness and food ingredient company, had issues of rice bran clumping in their hoppers and silos. Workers had to hammer the vessels, but the “solution” was causing delays and factory stress. “The noise was like fingernails on the chalkboard. You wanted to get away from it,” said the maintenance manager. 

    The AirSweep difference 

    After reviewing different flow aids, they chose the AirSweep system. Unlike hammers, the nozzle emits a quiet hissing sound that is further muffled by the sound of the material in the vessel. 

    AirSweep solved other usual pain points, too. Installation was simple and inexpensive: “Any electrician can wire it up.” Maintenance was convenient: “When we needed extra parts, customer service was extremely helpful and fast. If we had to get those parts from China, it may have taken months to get them.”

    AirSweep has made bulk material processing faster and simpler. Bunge installed additional systems in the masa flour factory,  “In fact, we are looking into expanding to use in other parts of our plant.”

    Unhappy with your flow aid? Consider AirSweep.

    AirSweep is proven to be more effective than fluidizers, vibrators, air cannons, and other flow aid systems. Find out how you can get better productivity and more cost savings in your bulk material processing.  

  3. 5 Videos That Prove That AirSweep Works On the Toughest Materials

    Comments Off on 5 Videos That Prove That AirSweep Works On the Toughest Materials

    Close up on ice cream making tools

    Do you work with a bulk material that tends to clump, settle, or stick to your vessel walls? Does the poor flow cause hours of downtime or affect the quality of your product? Have you tried other flow aids but still ended up manually clearing out the material blocks?

    Learn how to improve material handling quickly and efficiently. AirSweep is a pneumatic flow aid that works on the toughest materials and uses less energy and plant air than other flow aids. It is used in all industries and is installed in thousands of plants around the world.

    How does AirSweep work?

    AirSweep releases high-pressure bursts of air that dislodges material and sweeps it back into the flow stream. 

    The AirSweep units are strategically positioned around the vessel and then programmed to release bursts of air in a controlled sequence. This sequence is precisely calibrated to match the characteristics of your material. You get better flow while using less air than flow aids that run continuously. 

    Unlike vibrators and other mechanical flow aids, AirSweep’s air pulses do not damage vessel walls. You don’t even have to deal with any hammering noises – AirSweep releases a quiet hiss that is further muffled by the material in the vessel. You won’t hear a thing!  

    But the biggest benefit of AirSweep is that you are guaranteed to get reliable, first-in / first-out flow. Watch these AirSweep videos to see it in action. 

    AirSweep vs. Liquid Cheese

    If you’ve ever tried to grate mozzarella, you know how cheese can get sticky and difficult to handle. 

    Imagine trying to handle an entire hopper full of melted, gooey cheese. 

    Other flow aids clearly won’t work. Fluidizers can’t activate such a heavy solid, air cannons will leave cheese residue on the vessel walls, and vibrators will only make the cheese more compact. 

    Who moved the cheese? AirSweep. You can also read another success story of AirSweep in the cheese industry, and how it improved the material handling of whey protein concentrate.

    AirSweep vs. Chopped Tobacco

    Chips, fibers, flakes, and shavings are irregularly shaped and have a tendency to clump together. That’s why shredded paper makes great packing material – the individual strands form a nest that protects precious cargo. But it can be a headache if you’re trying to process these materials in your plant.

    Once again, AirSweep proves that it’s the best way to improve material handling. It isn’t just used in the tobacco industry. Its particular effectiveness for fibers and flakes makes it a popular choice for the paper and construction industries, or any plant that uses recycled materials.

    AirSweep vs. Damp, Compacted Fish Powder

    Many processes involve mixing powders and liquids, resulting in a very dense solution that can become compact during handling or prolonged storage. Most flow aids won’t be able to move this sticky paste very efficiently – which is why most plants will need to shut down operations to get workers to clear out the vessels.

    Skip the downtime, the hammering noises, and the hassle of having to clean your vessels by hand. AirSweep works even on damp, dense solids. Just turn it on, and walk away to focus on other parts of the plant.

    AirSweep vs. Calcium Carbonate

    Calcium carbonate is a sluggish powder that is prone to packing and sticking to vessel surfaces. It can clog hoppers, build up inside convey lines and filter bags, and cake in filter bags and cartridges.

    There are many powders that exhibit similar properties, like carbon black, acetaminophen, and titanium dioxide just to name a few. But AirSweep helped companies move those materials, just like it moves the calcium carbonate in this video.

    AirSweep vs. Cement Mix

    While the standard AirSweep releases air pulses in 360-degrees (ideal for silos, hoppers, and other similarly-shaped vessels), the AirSweep straight shooter releases air in a vertical column (ideal for chutes, ducts or specific hard-to-reach areas like pipe elbows).  

    That’s why many cement and mining/mined materials companies use AirSweep to move materials across different stages of the process.

    How to improve material handling of tough materials

    At AirSweep, we like to say that ‘the proof is in the flow.” We are trusted by the world’s biggest companies because of our proven effectiveness for all types of materials. We also offer a money-back guarantee and the longest warranty in the industry – which shows our confidence in our technology, and our commitment to your satisfaction.

    Contact us to find out more about AirSweep or get a customized proposal for your process.

  4. Processing Mined Materials: Challenges and Solutions

    Comments Off on Processing Mined Materials: Challenges and Solutions

    small piles of extracted rare earth minerals

    Mined materials are used in almost all industries, from construction to consumer goods. However, these materials can be challenging to move and process because of their physical and chemical properties.

    Let’s take a closer look at the common problems that can occur while processing mined materials, and how we can help.

    Types of Mined Materials

    Mined materials range from metallic ores like iron and copper to non-metallic minerals such as potash and gypsum. The World Mining Data names five different categories:

    • Iron and Ferro-Alloy Metals: Iron, Chromium, Cobalt, Manganese, Molybdenum, Nickel, Niobium, Tantalum, Titanium, Tungsten, Vanadium
    • Non-Ferrous Metals: Aluminium, Antimony, Arsenic, Bauxite, Beryllium, Bismuth, Cadmium, Copper, Gallium, Germanium, Indium, Lead, Lithium, Mercury, Rare Earth Minerals, Rhenium, Selenium, Tellurium, Tin, Zinc
    • Precious Metals: Gold, Platinum-Group Metals (Palladium, Platinum, Rhodium), Silver
    • Industrial Minerals: Asbestos, Baryte, Bentonite, Boron Minerals, Diamond (Gem/Industrial), Diatomite, Feldspar, Fluorspar, Graphite, Gypsum and Anhydrite, Kaolin (China-Clay), Magnesite, Perlite, Phosphate Rock (incl. Guano), Potash, Salt, Sulfur, Talc (incl. Steatite and Pyrophyllite), Vermiculite, Zircon
    • Mineral Fuels: Steam Coal (including Anthracite and Sub-Bituminous Coal), Coking Coal, Lignite, Natural Gas, Petroleum (incl. Natural Gas Liquids), Oil Sands, Oil Shales, Uranium

    Each of these has unique flow characteristics that present distinct challenges. For instance, metallic ores often possess high density, while non-metallic minerals may be prone to moisture retention.

    Challenges in Material Flow

    Material flow problems can lead to machine downtime and increased maintenance costs, which decreases profitability. The most common flow issues encountered while handling mined materials are:

    • Bridging. The material forms an arch above the outlet of a hopper or silo. This slows or even completely stops the flow, causing production delays.
    • Ratholing. The material accumulates along the vessel walls, forming a channel that restricts the flow. “Old” trapped material also remains in the vessel, instead of first in/first out flow.
    • Segregation. The materials segregate based on size or density during flow, resulting in inconsistent quality and potential waste of valuable resources.

    Dangers of overflow

    While material blocks slow or stop the flow, there’s also a danger of overflow–when equipment breaks down, causing tons of material to suddenly spill to the ground.

    The material spill can injure workers, release potentially flammable powders into the air, and take days to clean up.

    A processing facility may have to completely shut down operations until a material spill is cleared. Workers will also have to manually clear the material, which can pose health and safety risks.

    That’s why mining industry regulations require mines and mined materials facilities to have safety devices and protocols in case any equipment malfunctions.

    Ensure safe and efficient flow of mined materials

    Control Concepts, Inc. provides a complete solution for material flow problems. Our two superstar products, AirSweep and DAZIC, can work together for smooth and safe operations.

    AirSweep is a material flow aid that guarantees on-demand, first-in/first out flow. It is used in the mining industry to resolve bridging, ratholing, and segregation–and save a lot of time and money in the process!

    AirSweep’s patented nozzle delivers quick bursts of compressed air or gas along the container walls, breaking down bridges and ratholes without damaging the container or the material. It can activate even heavy, wet, or sticky mined materials. (Read more about AirSweep in the mined material industry.)

    Airsweep flowstream list of stubborn material

    DAZIC zero speed switches prevent material spills. It monitors the operational speed of rotating, reciprocating, or conveying equipment. It then triggers an alarm or shuts down a system if the equipment is operating at an unsafe or inefficient speed. 

    DAZIC can be installed on any equipment that has a rotating part, including conveyor belts, bucket elevators, motors, and more. It is inexpensive, durable, and reliable–and used by both global manufacturing firms and small, local businesses. 

    For many of those companies, DAZIC is an important part of plant efficiency and safety compliance. (Read more about how a zero speed switch helps you meet safety regulations.)

    Success stories

    AirSweep and DAZIC have helped mined materials facilities prevent the toughest material flow problems.

    • A mineral processing plant took an hour to fill one supersack with mined materials. AirSweep reduced filling time to just two minutes, for a 1200% increase in productivity.
    • One of the fastest growing mining companies in Africa were concerned about the safety issues and high energy consumption of air cannons – especially since workers still spent up to two hours a day clearing leftover material blocks. AirSweep completely solved the problem, prompting them to say, “You should be on billboards everywhere!”
    • A global tire manufacturer that uses carbon black installed DAZIC zero speed switches to meet safety standards. A carbon black spill could cause flash fires and breathing problems, and complicated cleaning processes since the material doesn’t dissolve in water and solvents.
    • A ready-mix concrete plant loads up to 250 tons of gravel an hour into its feeders. “It would be a nightmare if the DAZIC didn’t shut the conveyor belt down. I don’t even want to think about it,” said the plant supervisor. They installed DAZIC zero speed switches nearly 20 years ago–and they are still working! “They have never quit.”

    Take charge of the material flow of mined materials

    With AirSweep and DAZIC, you’re not just investing in a product – you’re investing in smoother operations, consistent product quality, and ultimately, a more robust bottom line. Contact us to find out more about how to improve material flow in your facility.

  5. The Hidden Costs of Poor Material Handling–and How AirSweep Can Help

    Comments Off on The Hidden Costs of Poor Material Handling–and How AirSweep Can Help

    Tooth wheel mechanism with efficiency, speed, and cost engraved.

    The Hidden Costs of Poor Material Handling–and How AirSweep Can Help

    Bridging, ratholing and other material blocks can have a huge impact on your bottom line. When material doesn’t flow, production stalls and you spend time and money fixing the problem. You also compromise your product safety and quality–and even your business reputation.

    That’s why poor material handling should be taken seriously. While it’s true that many materials have challenging flow properties, and it’s “natural” for these to settle during storage or cling to vessel walls, you need to get a reliable flow aid.

    Don’t think of flow aids as an expense, but as insurance and investment that prevents bigger, more expensive problems. Here are the hidden costs of poor material handling.

    Cost of downtime

    Profitability depends on productivity. However, bridging and ratholing in any vessel causes bottlenecks and affects all downstream processes. You may even have to pull workers from other parts of the plant to help clear material blocks–or, equally expensive, pay them to sit around and wait for material to flow properly.

    A cement company in Asia, which had to deal with shale clogging the silos, estimated that it lost $12,000 for every hour of downtime. For other companies in countries with higher costs of labor, this figure can be even higher.

    Cost of spoiled material

    When materials get trapped due to poor material handling, the time and conditions can lead to spoilage, particularly in the case of perishable goods. Compromised batches also need to be thrown away.

    When this occurs, you don’t just lose the value of the wasted material itself but also the opportunity cost. Resources and time spent on producing, transporting, and storing these materials go down the drain.

    A commercial bakery that had issues of flax bridging in the discharge had to throw away up to 40 bags of wasted material a day and even had to pay to have it hauled away. For a local business, this had a significant impact on their profit margins.

    Risk of spoiled products and product recalls

    Poor material handling is even more dangerous for the food and pharmaceutical industry, which follows strict regulations on product safety. If a product is spoiled, contaminated, or contains any ingredients that are not declared on the label, then there’s a big risk of product recall.

    The worst-case scenario is a product recall. According to Food Safety Magazine, direct costs can reach $10 million, not including litigation costs and lost sales and stock value.

    The financial aftershocks could last much longer. One U.S. grocery supplier survey showed that after a large peanut butter recall, 3 out of 4 consumers stopped buying the product for over a year–and it took massive marketing and PR efforts to rebuild public trust.

    Risk of safety hazards

    Caked whey protein caused a fire in a cheese company’s baghouse. This illustrates how poor material handling can become a safety concern–especially when working with materials that are potentially flammable.

    There are other safety risks, too. If workers have to manually clear material blocks, they can inhale powders and dusts, or become injured while climbing into vessels and wielding heavy tools.

    If they become injured, companies have to shoulder medical fees and potential fines for asking workers to take on responsibilities that they are not specifically hired or trained to do.

    AirSweep: trusted solution for poor material handling

    AirSweep is a tested and proven system that virtually eliminates issues like bridging and ratholing. The nozzles deliver quick, powerful bursts of air across the material’s surface, breaking up clumps and ensuring a smooth flow.

    Here’s why it’s a game-changer:

    • Higher productivity. Reduce flushing/cleaning time between product runs
    • Better product quality. Improve batch uniformity
    • Lower maintenance costs. Prevent vibration, stress, or wear to container walls
    • Lower energy costs. Uses less plant air and electricity than fluidizers, vibrators, air cannon, and other flow aids
    • No material feedback. The patented nozzle design immediately reseals after every pulse, eliminating feedback. This means less damage to the system and pipes, less cleaning, and no risk of cross-contamination
    • No noise. AirSweep runs with a soft, hissing sound
    • No safety risks. Workers no longer have to climb into vessels or lift heavy hammers to clear material blocks.

    AirSweep is the most powerful, cost-efficient, and safe solution for poor material handling. Read more about how it is used in every industry, and helped thousands of companies increase productivity and lower costs.

    You can also contact AirSweep for a personal consultation and custom proposal.

  6. The Complete Guide to Flow Aids

    Comments Off on The Complete Guide to Flow Aids

    Corn grain transmitting into bein with flow aids

    All industries need reliable material flow to maintain productivity and product integrity. Any material blocks–like settling of powders in storage, or material bridging in a hopper–cause delays and extra costs.

    Unfortunately, most bulk materials will not flow properly without some kind of intervention. This complete guide to flow aids will tackle:

    • What is a flow aid, and how does it improve plant operations
    • The different kinds of flow aids, and their pros and cons
    • What to consider when choosing a flow aid for your material and process

    What are flow aids?

    Flow aids are mechanisms or devices that encourage the efficient movement of materials inside a container or vessel. They prevent flow issues, such as:

    • Sluggish flow. Some bulk solids like mined materials or liquid cheese will flow slowly because of their density or the tendency to interlock or cling to vessel walls. Flow aids activate the material and flush it out of the vessel.
    • Material bridging in the hopper. Bridging, arching, or ratholing is a phenomenon where material forms an arch over the hopper outlet, thus obstructing the flow. Flow aids break up the bridges and prevent them from forming.
    • Segregation. Mixes made of materials with different shapes, densities, or other physical or chemical properties can segregate during storage or even during processing. Flow aids can activate the material so that the flow (and the proportion of ingredients) remains constant.

    What are the different kinds of flow aids?

    There are three types of flow aids: mechanical, fluidizing systems, and chemical. Each has its pros and cons.

    Mechanical flow aids use agitation or physical force to break up material blocks. Examples include vibrators, air knockers, paddle mixers, and agitators. Mechanical flow aids are relatively inexpensive and easy to source, they’re not appropriate for some vessels or materials.

    Mechanical agitation causes metal fatigue, which can damage vessels–especially small vessels with thin walls. It can also make some materials more compact or cause heavier particles to settle. This can worsen material bridging in hopper or material segregation.

    Fluidizing systems use air pulses to push material and break up cohesive friction. Examples include fluidizers, air pads, air cannons, and AirSweep.

    While all of these use the principle of aeration, they are very different in terms of capability and operating cost.

    Fluidizers and air pads use a combination of aeration and gentle vibration. These work on light powders like flour, but will not be effective for sticky, heavy, or moist materials.

    Air cannons release more powerful blasts of air, but require more electricity and air to operate. They’re also big, bulky, and produce a lot of “kickback” so they may not be used on some types of process equipment.

    Among all the fluidizing systems, AirSweep is the best combination of performance, cost, and flexibility. It releases powerful, controlled air pulses that activate all types of material without damaging vessel walls. The compact nozzle can be installed on any vessel, including silos, hoppers, chutes, pipes, ribbon blenders, or any place where material tends to hang up.

    Chemical flow aids change the material properties to material bridging in hoppers. For example, silicone-based agents like magnesium stearate can promote free flow, while anti-caking agents like calcium silicate can prevent lumps and caking.

    While chemical flow aids can improve a material’s flow, they can’t break up material bridging in the hopper. Other flow aids must still be installed on the vessel itself to fix material blocks.

    Questions to ask when choosing a flow aid

    Like any other equipment investment, you need to consider different factors to find the best solution for your needs. Here is a checklist of key questions to ask while reviewing your options.

    Material properties

    • What materials have poor flow properties?
    • What are the material’s other properties (density, cohesion, particle size, etc)
    • How do they respond to moisture? Do they become wet or sticky?
    • Do they tend to clump or settle during storage?
    • How do they respond to vibration or aeration?
    • Do any of the materials need sanitary handling to prevent spoilage or contamination?

    Vessel characteristics

    • What type of vessel do you have?
    • What is the size of the vessel?
    • Where is the vessel located?
    • Where does the bridging or material flow problem usually occur?
    • Do you have blind spots that are hard to reach?

    Flow aid features

    • What kind of materials can it activate?
    • What is the activation radius?
    • How much energy and air does it consume?
    • Does it damage the vessel?
    • Is it difficult to install? How long will installation take?
    • Is it safe to use in hazardous environments?
    • How often do I need to replace parts?
    • How long will it take to receive replacement parts?
    • Does it offer a warranty?

    Worker experience

    • Can it automate material flow, or will workers still need to monitor and manually clear material blocks and residue?
    • How easy is it to clean and maintain the flow aid?
    • Does it produce a lot of noise?

    How to find the flow aid with the highest ROI

    The right flow aid can solve material bridging in hoppers and other vessels and improve productivity and cost-efficiency. However, the wrong flow aid can actually increase delays and costs.

    Learn more about how AirSweep can solve material flow problems and give the highest return on investment. You can watch this video or contact our sales team for a personalized consultation.

  7. Safety and Production Issues? Signs You Need a Conveyor Belt Speed Sensor

    Comments Off on Safety and Production Issues? Signs You Need a Conveyor Belt Speed Sensor

    Conveyor Belt Speed Sensor on a production line

    Barnes Concrete Co., a manufacturer of ready-mix concrete, handles tons of bulk material a day. They have 12 mixers, with feeders loading up to 250 tons of gravel an hour.

    Any equipment malfunction would lead to an avalanche of bulk material which could injure workers and delay production for days. Plant supervisor Joe Kruzewski estimates it would take three people at least three hours to clear one ton. “It would be a train wreck [to be] buried with that amount of gravel.”

    Fortunately, the concrete company never had an accident. Twenty years ago, they installed a conveyor belt speed sensor: DAZIC zero speed switch. It would signal whenever there was any abnormal change in the conveyor’s speed, so the team could quickly shut down the process before a pile-up occurred.

    How does a conveyor belt speed sensor work?

    A conveyor belt speed sensor measures the speed of a conveyor belt by detecting the rotation of one of the belt’s rollers or pulleys.

    It is mounted on the shaft of the roller or pulley and generates an electrical signal as the shaft rotates. Then, it converts the signals into a speed measurement, typically expressed in revolutions per minute (RPM) or meters per second.

    The DAZIC zero speed switch takes it a step further. Aside from measuring the speed, it sets off an alarm when RPM falls out of normal parameters.

    For companies like Barnes Concrete Co., the DAZIC is a simple device that saves them a ton of problems. “It would be a nightmare if the DAZIC didn’t shut the conveyor belt down. I don’t even want to think about it,” Kruzewski said.

    What are the benefits of a conveyor belt speed sensor?

    Any manufacturing company can benefit from a DAZIC zero speed switch. It can:

    • Prevent accidents like material spills and pile-ups
    • Prevent bottlenecks by ensuring consistent equipment speed for synchronized processes
    • Allow preventive maintenance by identifying potential equipment issues before they become serious problems

    Signs you need a conveyor belt speed sensor

    If you’re experiencing these issues in your plant operations, consider installing a DAZIC zero speed switch on your conveyors or any other equipment with a rotating shaft (bucket elevators, drive motors, saw blades, etc.)

    • Frequent machine breakdowns. Changes in speed are often the first sign of other mechanical problems. A DAZIC zero-speed switch can detect these slowdowns in real-time so you can take corrective action, protecting your equipment from further damage.
    • Safety concerns. Material pile-ups and spills are not the only safety issue when equipment runs at an inappropriate speed. It can lead to overheating, vibration, or other malfunctions which can cause accidents or even fires.
    • Inefficient production line. When a machine slows down or stops unexpectedly, it can cause disruptions in the production line, affecting the overall workflow. A zero-speed switch enables you to fix the issue quickly to prevent bottlenecks and downtime.

    Learn more about DAZIC

    A DAZIC zero-speed switch can protect your equipment, improve productivity, and ensure a safer work environment. Contact us to find out more about DAZIC and how it can work in your process.

  8. 3 Ways AirSweep is Used in the Food Industry

    Comments Off on 3 Ways AirSweep is Used in the Food Industry

    Food production in the food industry

    Material handling efficiency is important for every industry, but it is especially important for companies that work with food and beverage, pharmaceuticals, nutraceuticals, and pet food.

    These industries work with materials that can spoil and put millions of users at risk for poisoning and other health risks. They also need to make sure that materials are mixed in the right proportions, to preserve the flavor, consistency, and efficacy of their products.

    That’s why some of the world’s biggest food manufacturers, as well as local businesses like bakeries and breweries, rely on AirSweep.

    What is AirSweep?

    AirSweep is a pneumatic flow aid that helps activate material through different stages of the production process. It releases timed, high-pressure air pulses that can break up clumps that form during storage, sweep material through hoppers and chutes during mixing, and flush vessels clean between batch runs.

    AirSweep in the food industry graphic

    Unlike other flow aids like vibrators or air cannons, AirSweep does not damage vessel walls or irritate workers with loud, relentless noise. It quietly activates even wet, sticky, or other problematic materials and gets the job done–without any need for manual intervention.

    Since the AirSweep nozzles are programmed to release timed, controlled pulses in a strategic sequence–rather than running continuously–it is also more energy- and cost-efficient.

    That’s why many manufacturers switched to AirSweep to achieve material handling efficiency. It provides reliable performance and solves common material flow problems with less cost.

    Move difficult material with poor flow properties

    The food industry often deals with materials that have poor flow properties, such as powdered ingredients, sticky substances, and granulated products. AirSweep’s powerful bursts of air can break up these materials and dislodge them from the sides of processing equipment, ensuring a smooth and consistent flow. This helps to reduce material waste, increase production throughput, and minimize the risk of costly stoppages.

    Watch how AirSweep can work with liquid cheese – a particularly challenging material that is too heavy for fluidizers and will settle when vibrated with pneumatic hammers or industrial vibrators.

    Flush vessels clean to shorten downtime and cleaning costs

    Regular cleaning and maintenance of food processing equipment are crucial to prevent cross-contamination and ensure product quality. However, the cleaning process can be time-consuming and expensive.

    An infant formula company was looking for a quick and reliable way to flush vessels clean between batch runs of regular and lactose-free products. However, they had to balance cost-efficiency with safety: even the slightest material residue could pose a significant health risk and lead to expensive product recalls.

    AirSweep was the perfect solution. “We went from 40 hours to 10 hours in cleanup time,” said the Company’s Associate Director for Process Technology Application and Productivity. After the initial pilot test in one facility in 2016, they have since added AirSweep units to the other process lines in that plant, and in four other plants worldwide, and are currently adding the system to other plants.

    Reduce material waste

    Material handling efficiency also reduces waste because of spoiled material or out-of-spec batches. A commercial bakery that had issues with bridging and ratholing had to throw away up to 40 pounds of mixture a day and even had to pay to have it hauled away. As a local business with tight margins, this had a significant impact on their bottom line.

    AirSweep was an affordable and cost-effective way to increase productivity and lower waste. They also appreciated the exceptional service and quick response times.

    “Customer service has been very helpful. I would call with some ideas and they would work with me on it, and they were right! Installation was awesome and easy, and the units have saved the company a lot of man hours. My experience totally exceeded my expectations—a 10 out of 10!” said the maintenance department head.

    Improve material handling efficiency with AirSweep

    AirSweep offers numerous benefits to the food industry, from improving material flow to reducing cleaning time and ensuring product safety.

    It can help companies face challenges such as increasing demand and stricter regulations, while streamlining their operations and costs without compromising safety.

    Contact us to find out more about how AirSweep can help with your plant operations.

  9. How to Improve Material Handling Safety: 7 Best Practices for a Safer Work Environment

    Comments Off on How to Improve Material Handling Safety: 7 Best Practices for a Safer Work Environment

    hard hat and other protect equipment for material handling

    Material handling can present various safety challenges, including worker injury, exposure to toxic chemicals, flammable environments, and material spills. It’s important to implement safety protocols to prevent health hazards and meet industry regulations.

    Read how to improve material handling safety in all plant operations.

    Regular Training and Refresher Courses

    Training is the bedrock of any safety protocol. All personnel involved in material handling should undergo a comprehensive training program and periodic refresher courses. This ensures that safety protocols remain top-of-mind and are updated with the industry’s best practices.

    Limit Manual Handling

    Even with the best techniques, the continuous manual handling of materials can lead to musculoskeletal disorders. Wherever possible, automate processes or use machinery.

    For instance, a pneumatic flow aid like AirSweep can help move material through silos, hoppers, and other vessels. It prevents bridging and ratholing and eliminates the need for workers to manually clear material blocks with hammers or pick-axes.

    Use of Personal Protective Equipment (PPE)

    Wearing the right PPE can make a difference between a regular day at work and an unfortunate incident. Depending on the material and the nature of the job, PPE can range from safety gloves, hard hats, safety glasses, to steel-toed boots. Ensuring that the PPE is not just available, but also used correctly, is one of the best ways to improve material handling.

    Safety protocols for heavy equipment

    Forklifts, conveyors, and other heavy machinery play a significant role in material handling. However, they can also be sources of severe injuries if used incorrectly. Implement measures like designated walkways, clear signage, speed limits, and ensuring that only trained personnel operate such machinery.

    Advanced safety features

    Incorporate safety tools that monitor equipment and provide real-time feedback.

    For instance, DAZIC zero speed switches can detect abnormal changes in speed of rotary equipment like conveyor belts or bucket elevators. If something goes wrong, these switches can trigger alarms or shut down the system, preventing material pile-up and worker injury.

    Regular equipment maintenance

    Well-maintained equipment is less likely to malfunction, thereby reducing the risk of accidents. Regular checks and preventive maintenance can catch potential problems before they escalate.

    Emergency Preparedness

    Despite the best precautions, emergencies can still occur. Prepare a well-documented and practiced emergency plan. Regularly conduct drills, ensure that emergency exits are clearly marked and unobstructed, and have first aid kits readily accessible.

    Learn how to improve material handling with Control Concepts

    Safety in material handling is a multi-faceted approach, from training and PPE to incorporating advanced systems like AirSweep flow aids and DAZIC zero speed switches.

    We can help you ensure a safer work environment while also improving efficiency and productivity. Contact us to find out more about how to automate material handling and prevent material spills and pile-up.

  10. How to Prevent Bridging in Material Hoppers (aka The Ketchup Effect)

    Comments Off on How to Prevent Bridging in Material Hoppers (aka The Ketchup Effect)

    Ketchup in a factory getting packaged

    Have you ever struggled to get ketchup or any thick sauce out of a bottle? That’s the same issue that production facilities face when they try to move solids or powders through material hoppers. The material gets stuck, and production stops.

    Unlike liquids, bulk solids and powders will not flow readily without intervention. Even some thick liquids like ketchup are notoriously difficult to handle. The material clings to the vessel walls, or becomes more compact – also known as bridging.

    What is bridging?

    Bridging in material hoppers refers to the phenomenon where bulk materials, such as powders, granules, or pellets form an arch-like structure over the outlet. It stops material from flowing freely, which leads to several production problems:

    • Need for manual intervention to loosen the material
    • Lower productivity and machine downtime
    • Inconsistent product formulas
    • Stagnant material that can spoil or contaminate the next batch
    • Material waste from throwing away spoiled material or out-of-spec batches

    What causes bridging in material hoppers?

    • Know your material’s flow properties. Choose non-cohesive materials whenever possible. If cohesive materials are necessary, consider additives or treatments to reduce their cohesive properties.
    • Control moisture. Implement proper moisture control measures to ensure the material remains within the acceptable range for smooth flow. This might include using desiccants, heaters, or dehumidifiers.
    • Select the right design of material hoppers. Select an appropriate hopper design based on the material’s characteristics. Conical material hoppers with an angle between 50 to 60 degrees, and the right outlet size, can help promote steady flow.
    • Consider hopper liners. Using hopper liners made of low-friction materials like Teflon can help reduce material adhesion and bridging.
    • Use the right flow aid. Many manufacturers use industrial flow aids to break up material blocks and encourage regular, reliable flow. Aside from speeding up production, it prevents stagnant or spoiled material and the safety risks from manual intervention and cleaning.

    Solve bridging in material hoppers with AirSweep

    Preventing bridging in material hoppers is essential to ensure the continuous and efficient flow in industrial processes.

    Both global brands and SMEs use AirSweep to get smooth, on-demand flow. AirSweep is a pneumatic flow aid that releases powerful, high-pressure air pulses that break up bridging and sweep the vessel walls clean. It is energy-efficient, requires very little maintenance, and has proven effective for even the toughest flow problems.

    AirSweep can be installed on material hoppers as well as other process equipment like silos, chutes, conveyor belts, or any place where material tends to hang up.

    Since AirSweep uses aeration rather than vibration, it does not cause metal fatigue and damage small or thin material hoppers. AirSweep is also certified safe to use in hazardous and flammable environments, and there are models that are specifically designed for sanitary applications.

    Contact us to find out more about AirSweep and how it can reduce bridging in your material hoppers.

Copyright Control Concepts, Inc. , 19 S. Main Street, Brooklyn, CT 06234 • ph: 860-928-6551 • fax: 860-928-9450

Call Now Button